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Abstract

A challenging topic in content-based image retrieval
is to determine the discriminant features that im-
prove classification performance. An approach to learn
concepts is by estimating mizture model for image
databases using EM algorithm,; however, this approach
is impracticel to be implemented for large databases due
to the high dimensionality of the feature space. Based
on the over-splitting nature of our EM algorithm and
the Bayesian analysis of the multiple users’ labelling
information derived from their relevance feedbacks, we
propose a probabilistic MDA to find the discriminating
features, and integrate it with the EM framework. The
experimental results on Corel images show the effec-
tiveness of concept learning with the probabilistic MDA,
and the improvement of the retrieval performance.

1 Introduction

Recently, several researchers working on content-based
image retrieval (CBIR) adopt Gaussian mixture model
(GMM) to model the database image distribution [1]
[2] [3]. The knowledge of the mixture model for an
image database may provide good classifiers and thus,
improve retrieval performance.

One major approach to estimate mixture model
is the Eaxpectation-Mazimization (EM) algorithm [4].
However, due to the high dimensionality of the feature
space of image databases, the direct implementation of
EM on the feature vectors is impractical for two rea-
sons: (1) it is difficult in finding the most discriminat-
ing features; (2) the computation of EM is formidable.
Wu and Huang [5] propose to integrate multiple dis-
criminant analysis (MDA) [6] with the EM framework
for the hybrid (labelled and unlabelled) data, so that
the weak classifiers are boosted by exploring discrim-
inating features in a self-supervised fashion. This is
called D-EM, in which the number of classes (clusters)
is assumed to be known by the system, and each class
provides some labelled images.

However, to estimate the mixture model for a real
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Figure 1: System diagram for concept learning .

image database, the number of classes is unknown
in advance by the system. We propose an over-
splitting EM algorithm to avoid estimating the number
of classes. Our EM algorithm will be fed with the pos-
itive and negative labelling information derived from
the relevance feedbacks by multiple users. As the la-
belling information provided by different users may be
inconsistent, we propose to process and exploit it for
learning based on Bayesian analysis.

For our over-splitting EM algorithm, the direct D-
EM may mislead the system to find the most discrimi-
nating features. Fortunately, our Bayesian analysis on
the users’ labelling information may provide the proba-
bilities between some mixture components in EM. Such
probabilities may help to avoid the misleading effect on
finding the most discriminating features.

Figure 1 illustrates the diagram for our system with
concept learning by exploiting users’ labelling informa-
tion. The main contributions of this paper are (1) a
probabilistic MDA to find the most discriminating fea-
tures and (2) a framework for the semi-supervised EM
algorithm integrating with the probabilistic MDA to
achieve concept learning.

2 Technical approach

2.1 Labelling information analysis

We define the labelling information derived from the
relevance feedback of a user as a retrieval experi-
ence & = {X+, X7}, where Xt = {a],2f,...,2%.}
are labeled as belonging to (positive for) a certain
but unknown class while another portion of samples
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X~ = {a7,25,...,xy-} are labeled as NOT belong-
ing to (negative for) that unknown class. Note that =
(i=1,2,....,N")and z; (j =1,2,...,N7) are image
visual feature vectors.

It is necessary to find an efficient way to store the
information contained in the retrieval experiences from
multiple users. We assume that each database image
belongs to one and only class (decided by the opinion
of the majority of people), and we regard this assign-
ment as the true labelling information, and all the other
contradicting labelling information on this image as la-
belling noise. We define the labelling noise rates as

a=prob(I ¢ £|T € C; € C C), and

B=prob(I eI ¢ CECC),
where £ C C” means that the user who has provided
retrieval experience £ is seeking the images of Class C,
"I € (¢) C” represents that Image I is (not) belonging
to Class C, and 71 € (¢) £ denotes that Tmage I is
labelled as positive (negative) in retrieval experience £.
Basically, a denotes the probability that a user labels
an image as negative when this user is seeking a class
and this image belongs to this class, and 3 denotes the
probability that a user labels an image as positive when
this user is seeking a class and this image does NOT
belong to this class.

If a and 8 are known, some retrieval experiences are
merged into a single concept experience using Bayesian
analysis [7]. We denote the collection of such concept
experiences as ®. We can compute prob(C;,C;), the
probability that the ith and jth concept experiences
are for the same concept, and such probability will be
used for the following probabilistic MDA.

2.2 Probabilistic D-EM

2.2.1 Over-splitting: To estimate the mixture model
using EM, the number of components for the algorithm
has to be given, although the system usually does not
know the real number of classes ¢,cq;. With the knowl-
edge of highest possible number of classes ¢y, and
the experience concept collection ® with |®| being the
number of elements in ¢, we can determine the ini-
tial number of components ¢ for the EM algorithm as
¢ = maz(Cmaz, |P|). We initialize |®| of the ¢ compo-
nent centers to be the |®| experience concept centers,
and randomly select c—|®| data as the remaining c—|®|
component centers. We also initialize the ¢ component
covariances matrices to be identity matrices.

To evaluate the over-splitting clustering result R =
{R1,..., R.}, we compare it with the groundtruth mix-
ture model C = {C4,...,C.,..,} (¢ > ¢reqr) by using a
statistical index. A pair of vectors {z;,z;} are referred
to as (I) BS if both vectors belong to the same com-

ponent in C and to the same cluster in R, (IT) BB if
both vectors belong to the same component in C. Let
& and & be the number of BS and BB respectively,
we use ST = % to evaluate an over-splitting clustering
result.

2.2.2 Probabilistic MDA: For the case of multi-
ple classes (¢ classes), multiple discriminant analy-
sis (MDA) [6] finds a linear transformation to map
the original d-dimensional feature space to a new d'-
dimensional feature space (d' < d), by maximizing the
objective function

t
W) = s
where W is the transformation matrix, Sp is the
between-class scatter matrix, and Sy is the within-
class scatter matrix. Note that the within-class scatter
matrix is

Sw =21 Yoper, (@ —m) (@ —my)",
where m; is the mean for the ith class (i = 1,2,...,¢),
and the between-class scatter matrix is

Sp =3 ni(m; —m)(m; —m)?,
where m is the mean for all of the data and n; is the
number of data in the ith class (i = 1,2,...,¢).

For our EM algorithm, the clustering may result in
over-splitting due to the unavailability of the number
of clagses. A naive approach to find the discriminating
features is to implement D-EM algorithm [5] directly
on the data. However, since some different components
during EM iteration may correspond to the same class
due to over-splitting, the direct MDA on the data may
not be optimal. For example, for the two components
C1 and C5 that actually belong to the same class, the
transformation W of the direct MDA still attempts to
separate (7 and (s instead of combining them. Fur-
thermore, since MDA is a global optimization prob-
lem, the attempt to separate C; and Cy weakens the
discriminating ability of the resulting features for sep-
arating the other "real different” classes. Thus, the
direct D-EM in [5] may mislead the exploration of the
discriminating features in our system.

Some components in our semi-supervised EM algo-
rithm correspond to the experience concepts in the col-
lection ®, and such correspondence is determined at
the initialization stage of the EM since the center of
each experience concept in ® is set to be the initial
center of one component in EM as we have introduced
in Section 2.2.1. For each pair of components C; and
C; (i,j=1,2,...,c) in EM, since we can compute the
probability that their corresponding experience con-
cepts in ® are belonging to the same class [7], this
probability can be regarded as the probability that C;
and C; are belonging to the same class, and we denote
it as prob(C;,C;) (i,j = 1,2,...,¢). Note that such
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probability is also a kind of labelling information since
it is derived from people, although it is not in the form
of {0, 1}.

Now we reconsider the MDA with the probabilities
prob(C;,C;) (1,5 =1,2,...,¢). Intuitively, if the value
of prob(C;, C;) is low, the transformation of the MDA
should tend to separate C; and C; and vice versa. To
achieve this idea, we first rewrite the between-class
scatter matrix in the pairwise form as

S = i) Sy many(mi —my)(m; — my)t.

As each term on the right of the above equation rep-
resents the separation between a pair of components
Ciyand C; (i,j = 1,2,...,¢), we assign the weight to
this separation by directly multiplying the probability
(1 —prob(C;, C;)) to the term corresponding to C; and
Cj,i.e., our criterion for the separation of different com-
ponents is given by modifying the between-class scatter
matrix S as

c—1 c
S = Z Z (1—prob(C;, C;))nim;(m;—my)(m;—m;)".

i=1 j=i+1
Corresporidi;gly, the objective function for MDA is
modified as —

J(W) = me
We call this probabilistic MDA. The probabilistic MDA
is more suitable to deal with the case where mixture
components are related to each other with probabilities,
instead of the binary relationship which MDA usually
can handle.

2.2.3 EM framework: Figure 2 presents our EM al-
gorithm for concept learning. Our probabilistic MDA
is integrated with the E-step and M-step.

Since over-split clustering may lead to very small

components, which cause the singularity problem, we
remove those small components right after the com-
ponent proportion estimation at each iteration. The
removal criterion is: if a; < 6(1), j = 1,2,...,¢, the
jth component is removed. This is called component
anndhilation [8]. Although component annihilation is
usually based on the relationship between sample sizes
and dimensionality, we simply use a constant parame-
ter & (0 = 0.1 in this work) since the purpose of our
component removal is only to avoid singularity.
2.2.4 Indexing and search: We directly use the
clustering result of our EM algorithm for indexing, by
which the images belonging to the same cluster are
stored consecutively on hard drive. When a query im-
ages comes, the system chooses the cluster with the
highest probability that the query belongs to this clus-
ter based on the mixture model parameters. Thus, the
search is limited to the images belonging to this clus-
ter so that the search time is saved compared with the
global search.

e Given the data A, the collection of the experience
concept @, and ¢z

e Initialization (see Section 2.2.1).

Estimate component proportions {ai,as,...,ac}.

o Repeat
1. Remove the jth component if a; < 5%, j =
1,2,...,c. Normalize the proportions for the
remaining ¢’ components, ¢ < ¢’

E-step: Estimate component-indicators Z .
Modify Z by concept collection &.
X < probabilistic MDA(X, Z, ®).

M-step: ~ Compute component proportions,
means and covariances respectively ([4]).

BTl

6. Stop if termination criterion is met.

Figure 2: Probabilistic D-EM algorithm for concept
learning.

3 Experiments

We collect 1,200 images from Corel stock photo library
and divide them into 12 classes [3]. Images are repre-
sented by texture and color features only. The texture
features are derived from 16 Gabor filters. We also
extract means and standard deviations from the three
channels in HSV color space. Thus, each image is rep-
resented by 22 features.

We set the system running time as ¢t =0,1,2,...; at
each t, a user makes his/her queries and provides a re-
trieval experience by executing relevance feedback. At
each relevance feedback iteration, the system presents
20 images for users to label. We assume that the system
only knows that ¢ae = 2¢reqr = 24.

Figure 3 provides various performances for concept
learning with different labelling noise rates. Figure 3(a)
shows that the percentage of the images ever being la-
belled (no matter positive or negative) increases with
retrieval experiences increased. From Figure 3(b), we
observe the number of clusters (after EM algorithm)
over time. For lower labelling noise rate, this estima-
tion converges to c¢peq (=12) faster. Figure 3(c) shows
that integrating probabilistic MDA with EM effectively
reduce the dimensionality of feature space (original di-
mensionality is 22). Since the main computational load
of EM is the computation of the inverse of each compo-
nent’s covariance, whose complexity is o(ed?) (c is the
number of components and d is feature dimensional-
ity). In this experiment, the dimensionality is reduced
from 22 to 7 ~ 12. Thus, the computational load for
the EM is alleviated significantly. Figure 3(d) validates
that the clustering (evaluated by the statistical index
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Figure 3: Performance for concept learning with vari-

ous labelling noise rates.
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Figure 4: Retrieval precisions of different approaches.

SI) is improved with more labelling information pro-
vided by retrieval experiences.

Figure 4 demonstrates that the retrieval precision
improves faster with lower labelling noise rates « and
8. Furthermore, Figure 4(a) compares our probabilistic
MDA (pmda) approach with non-MDA one, and we
observe that pmda is better than non-MDA approach
in all of the cases with various labelling noise rates.
Figure 4(b) shows that the integration of pmda with
EM is better than the direct D-EM in [5].

Figure 5 presents two important results without la-
belling noise. Since the results for the cases with la-
belling noise have the similar trends (although their
learning improvement is slower), we do not show
them due to space limitation. Figure 5(a) shows the
precision-recall curves from which we observe that the
retrieval performance is improved with more retrieval
experiences. Using the clustering result, the indexing
structure can be derived. Figure 5(b) helps us to con-
clude that the indexing structure requires much less
search (measured by IO accesses since the database im-
ages are stored on hard drive) compared with the global
search.
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Figure 5: Noise rate = 0.0.
4 Conclusions

The paper proposes a concept learning approach for im-
age databases, which is achieved by an EM algorithm
integrating the probabilistic MDA, so that the difficul-
ties brought by the high dimensionality of feature space
are alleviated and the discriminating features are de-
termined. The retrieval performance is improved using
the concept learning results in two aspects: 1) the re-
trieval precision is improved, and (2) the search time
(represented by IO access) is saved.
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